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Rewards are often unreliable and optimal choice requires behavioral flexibility and learning about the
probabilistic nature of uncertain rewards. Probabilistic learning occurs over multiple trials, often without
conscious knowledge, and is traditionally associated with striatal function. While the hippocampus is
classically recognized for its role in memory for individual experiences, recent work indicates that it is
also involved in probabilistic forms of learning but little is known about the features that support such
learning. We hypothesized that adult neurogenesis may be involved, because adult-born neurons
contribute to both learning and reward-related behaviors. To test this, we used an appetitive probabilistic
reversal learning task where a correct lever is rewarded with 80% probability and an incorrect lever is
rewarded with 20% probability. Behavioral flexibility was assessed by switching correct-incorrect lever
identities after 8 consecutive correct choices. Transgenic male rats that lacked adult neurogenesis
displayed an initial deficit in discriminating the correct and incorrect levers, but they were not impaired
at reversing behavior when the reward contingencies switched. When reward was withheld after a correct
lever choice, neurogenesis-deficient rats were more likely to choose the incorrect lever on the subsequent
trial. Also, rats with intact neurogenesis were more sensitive to reward at the incorrect lever. Differences
were not observed in control transgenic rats that had intact neurogenesis. These results identify a novel
role for neurogenesis in learning about uncertain, probabilistic rewards. Altered sensitivity to reward and
negative feedback furthermore implicates neurogenesis in cognitive phenotypes associated with mood
disorders such as depression.
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Learning often occurs in the context of uncertainty, requiring
judgments to be made about how previous experience applies to
the current situation. For example, features of the sensory envi-
ronment may resemble those of a previous experience, leading to
uncertainty about whether the outcome is also likely to be similar.
By amplifying sensory differences and associating the stimuli that
make each episode unique, the hippocampus plays an essential role
in disambiguating experiences (Eichenbaum, 2004; Kesner &
Rolls, 2015). Another type of uncertainty has to do with probabil-

ity, because a given stimulus or action may not always be associ-
ated with a particular outcome. When choosing where to park
one’s car, a spot may be available on one day but not the next.
However, over days and weeks one may learn that some spots are
more likely to be available. In this scenario, memory for an
individual episode is less helpful for guiding choice behavior.
Instead, as situations repeat themselves, we can accumulate knowl-
edge about the cues that best predict rewards and the actions are
most likely to obtain them.

The role of the hippocampus in probabilistic learning is unclear,
because most studies probing its involvement in learning use cues
and reward contingencies that are consistent, and early studies that
have employed probabilistic contingencies suggested that the hip-
pocampus is not involved (Knowlton, Mangels, & Squire, 1996).
However, human hippocampal field potentials are maximal when
rewards are uncertain (Vanni-Mercier, Mauguière, Isnard, & Dre-
her, 2009) and studies of human learning suggest that the hip-
pocampus contributes to more incremental forms of learning when
there is a probabilistic component. For example, hippocampal
integrity is crucial for normal learning in the weather prediction
task, where optimal performance requires one to learn probabilistic
relationships between cue configurations and weather outcome
(Duncan, Doll, Daw, & Shohamy, 2018; Hopkins, Myers, Sho-
hamy, Grossman, & Gluck, 2004; Knowlton, Squire, & Gluck,
1994). Other studies have reported that the hippocampus is re-
quired for probabilistic learning in tasks that do not have a strong
configural component, such as learning butterfly-flower associa-
tions (Foerde, Race, Verfaellie, & Shohamy, 2013; Foerde &
Shohamy, 2011) or learning which players, in a game-like task,
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were more or less likely to win money (Palombo, Hayes, Reid, &
Verfaellie, 2019). In keeping with these findings, studies in ani-
mals have revealed that lesioning or inactivating the hippocampus
impairs probabilistic reward learning in spatial choice tasks (Jeong
et al., 2018; Nonneman, Voigt, & Kolb, 1974). Additionally,
hippocampal CA1 pyramidal neurons conjunctively code for re-
wards and choice behavior, suggesting these hippocampal net-
works have the requisite signals to modify behavior based on
reward probabilities (Lee, Ghim, Kim, Lee, & Jung, 2012). Thus,
the limited evidence that is available suggests the hippocampus
may contribute to certain forms of probabilistic learning. Whether
hippocampal function is needed for animals to solve probabilistic
tasks that have less of a spatial component remains less clear.

Neural plasticity is a crucial aspect of all forms of learning, and
one form of plasticity that is unique to the hippocampus and may
contribute to probabilistic learning is adult neurogenesis (Snyder
& Cameron, 2012). Adult-born dentate gyrus neurons undergo
morphological and electrophysiological plasticity in response to
electrical stimulation and natural experiences (Alvarez et al., 2016;
Bergami et al., 2015; Chancey et al., 2013; Lemaire et al., 2012;
Snyder, Kee, & Wojtowicz, 2001) and exhibit dopamine-
dependent synaptic plasticity, suggesting they may be directly
regulated by sensory and reward signals during probabilistic learn-
ing (Mu, Zhao, & Gage, 2011).

Behaviorally, adult-born neurons contribute to learning in tests
of spatial and contextual memory that arguably have a probabilis-
tic learning component. For example, in contextual fear memory
paradigms, stimuli are only partially predictive of outcomes (e.g.,
shock is only present for a portion of training; stimuli may be
associated with shock in one context but not another in in discrim-
inative paradigms). In the water maze, responses to cues may be
reinforced on some occasions (during a successful escape) but not
others (during a near miss). However, the precise role of neuro-
genesis is difficult to test in these paradigms, due to the difficulty
of linking diverse behavioral responses to complex patterns of
stimuli. More direct support comes from findings that silencing the
dentate gyrus and blocking adult neurogenesis do not impact fear
conditioning to tones in standard (deterministic) paradigms, but
both manipulations reduce fear conditioning to tones that are only
partially paired with footshock (Glover, Schoenfeld, Karlsson,
Bannerman, & Cameron, 2017; Tsetsenis, Ma, Lo Iacono, Beck, &
Gross, 2007). Whether this extends to appetitive reward situations
is unknown but, notably, new neurons have been implicated in
cognitive aspects of deterministic reward seeking: blocking neu-
rogenesis reduces reward consumption in reversal situations (Seib
et al., 2013; Snyder, Soumier, Brewer, Pickel, & Cameron, 2011;
Swan et al., 2014), reduces effort expended to obtain rewards
(Karlsson, Wang, Sonti, & Cameron, 2018), and biases rats toward
smaller, immediate rewards (Seib, Espinueva, et al., 2018). Inves-
tigation of a role for the hippocampus in probabilistic reward
learning is of particular interest, given that reward and feedback
processing is disrupted is disorders such as depression (Henriques
& Davidson, 2000; Murphy, Michael, Robbins, & Sahakian, 2003;
Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008; Treadway,
Bossaller, Shelton, & Zald, 2012), which has been associated with
perturbed hippocampal neurogenesis (Eisch & Petrik, 2012; Sa-
polsky, 2004).

In light of the above mentioned findings, the present study was
designed to directly test whether new neurons contribute to reward

learning in conditions of uncertainty. In so doing, we tested trans-
genic, neurogenesis-deficient rats in a probabilistic reversal learn-
ing (PRL) task (Bari et al., 2010; Dalton, Phillips, & Floresco,
2014) that is modeled after tests of reward learning and behavioral
flexibility in humans (Chamberlain et al., 2006; Murphy et al.,
2003). Rats that lacked neurogenesis were slower to discriminate
a “correct” lever that was more likely to deliver reward from an
“incorrect” lever that was less likely to lead to a reward (80% vs.
20%). Moreover, neurogenesis-deficient rats displayed altered sen-
sitivity to reward and negative feedback, identifying cognitive
functions for new neurons that are relevant for disorders such as
depression.

Materials and Method

Animals

All procedures were approved by the Animal Care Committee at
the University of British Columbia and conducted in accordance
with the Canadian Council on Animal Care guidelines regarding
humane and ethical treatment of animals. Experimental transgenic
rats (n � 37 total) expressing HSV-TK (TK) under the human
GFAP promoter, and their wild type (WT) littermates, were gen-
erated on a Long-Evans background by breeding wild type females
(Charles River, Canada) with transgenic males (Snyder et al.,
2016). In these rats, neurogenesis can be specifically and effec-
tively inhibited by administering the antiviral drug, valganciclovir
(VGCV). Breeding occurred in the Department of Psychology
animal facility with a 12-hr light/dark schedule and lights on at
9:00 a.m. Experiments were performed during the light phase of
the light/dark cycle. Breeding occurred in large polyurethane cages
(47 cm � 37 cm � 21 cm), containing a polycarbonate or plastic
tube, aspen chip bedding and ad libitum rat chow and water.
Breeders (both male and female) remained with the litters until
P21, when offspring were weaned to two per cage in smaller
polyurethane bins (48 cm � 27 cm � 20 cm) and transgenic rats
were genotyped afterward.

Male WT (n � 9) and TK (n � 8) littermates were orally treated
with 4 mg VGCV in a peanut butter-chow vehicle (VEH), twice
per week for 6 weeks starting at 6 weeks of age. In a second,
control experiment, WT (n � 11) and TK (n � 9) rats were treated
similarly but with the peanut-butter VEH only. At 11 weeks of age
rats were single housed and food restricted to 90% of their initial
weight (15 g food/day until the onset of the full PRL task, at which
point they received 18g/day). During this time they were handled
for a minimum of 5 min/day for 5 days by the experimenters. At
12 weeks of age rats underwent behavioral testing, lasting �3
weeks, and were then euthanized for histology (doublecortin im-
munostaining).

Behavioral Testing

All animal testing was conducted in operant chambers (30.5
cm � 24 cm � 21 cm; Med Associates, St. Albans, VT) enclosed
in sound-attenuating boxes, as previously described (Dalton et al.,
2014, Dalton, Wang, Phillips, & Floresco, 2016). Each box was
equipped with a fan to provide ventilation and mask external noise.
The chambers were equipped with two retractable levers on either
site of a central food receptacle where food reinforcement (45 mg
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sugar pellet; Bioserv, Frenchtown, NJ) was delivered by a pellet
dispenser. The chambers were illuminated by a 100 mA house
light located on the top center of the wall opposite the levers. Four
infrared photocell sensors were positioned on the walls adjacent to
the levers. Locomotor activity was indexed by the number of
photobeam breaks that occurred during a session. The food recep-
tacle contained an infrared head entry detector to determine the
number of nosepokes. All experimental data were recorded by
personal computers connected to chambers through an interface.

On the day before their first exposure to the operant chambers,
each animal received �25 reward pellets in their home cage. On
the first day of training, rats were in the operant chamber for 30
min and every 30 s one reward pellet was delivered into the food
receptacle. On the second day of training, the food receptacle
contained two to three reward pellets and crushed pellets were
placed on the extended lever before each rat was placed in the
chamber. First, rats were trained to press one of the levers to
receive a reward on a fixed-ratio 1 (FR1) schedule to a criterion of
60 presses in 30 min. Levers were counterbalanced left/right
between subjects. When the criterion was met, FR1 training was
conducted on the other lever to ensure that both levers were
experienced.

After initial lever press training rats were trained on a simplified
version of the full probabilistic reversal learning (PRL) task. These
90-trial sessions started with the levers retracted and the operant
chamber in darkness. Every 40 s, a new trial was initiated by the
extension of one of the two levers into the chamber. If the rat failed
to respond to the lever within 10 s, the lever was retracted, the
house light was extinguished and the trial was scored as an
omission. A response within 10 s of lever insertion resulted in
delivery of a single pellet with 50% probability. This procedure
was used to familiarize the rats with the probabilistic nature of the
task. In every pair of trials, the left or right lever was represented
once, and the order within the pair of trials was random. Rats were
trained for 3–5 days on this task to a criterion of 80 or more
successful trials (i.e., � 10 omissions).

Once pretraining on the simplified version of the task was
completed, rats were trained on the full version of the PRL task for
7 days a week, for 12 days, as we have described previously
(Dalton et al., 2014, 2016). Each 50 min daily training session
consisted of 200 discrete trials with an intertrial interval of 15 s. At
the beginning of each trial, the house light was illuminated and
both levers extended after 3 s. One of the two levers was randomly
selected to be “correct” and the other to be the “incorrect” lever
(see Figure 1). During the initial discrimination phase, a press on
the correct lever delivered a single reward pellet on 80% of trials,
whereas a press on the incorrect lever delivered a reward in only
20% of trials. Once the correct lever was selected on eight con-
secutive trials (regardless of whether a correct choice was rein-
forced), the contingencies reversed so that the formerly correct
lever now became the incorrect lever and vice versa. This pattern
continued to a maximum of 200 trials each day. If a rat failed to
respond within 10 s after the levers extended, both levers retracted,
the trial was scored as an omission and houselights turned off until
the next trial began. Rats were trained for 12 days.

Analyses

Learning was assessed by quantifying the number of reversals
and errors (incorrect lever choices) per day over the 12 days of
testing. Steady-state task performance was assessed on the last 3
days of testing, once performance had stabilized. Here, we quan-
tified the average number of reversals and errors per 200 trial
session. We also examined reward sensitivity, defined as the
proportion of trials where a rewarded choice was followed by a
subsequent choice of the same lever (win-stay behavior). Simi-
larly, sensitivity to negative feedback was defined as lose-shift
behavior, and quantified as the proportion of trials where absence
of reward was followed by a shift in choice to the other lever.
Win-stay and lose-shift behavior were calculated for both the
correct lever and incorrect lever. Additional analyses are described
in the Results section. The role of neurogenesis in learning and

Figure 1. Probabilistic reversal task overview and experimental timeline. (A) Schematic illustrating the PRL
task. (B) Timeline of VGCV treatment and operant testing. VGCV � valganciclovir; VEH � vehicle; PRL
task � probabilistic reversal learning task; WT � wild type; TK � thymidine kinase. See the online article for
the color version of this figure.
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task acquisition was determined by repeated measures ANOVA
(Genotype � Day). Validation of steady state performance was
assessed by repeated measures ANOVA, and genotype differences
in steady state performance were determined by unpaired, two-
tailed t tests. All data were analyzed using Prism 8 software
(GraphPad). Where data were not normally distributed, Mann–
Whitney tests were used to compare genotypes. In all cases sta-
tistical significance was set at � � .05.

Results

To investigate a role for neurogenesis in reward learning and
feedback sensitivity, we used a probabilistic reversal learning task
that is directly modeled after paradigms used to test reward and
feedback sensitivity in depressed patients (Murphy et al., 2003;
Rygula, Noworyta-Sokolowska, Drozd, & Kozub, 2018) and the
role of serotonin in probabilistic reward learning in humans
(Chamberlain et al., 2006) and rats (Bari et al., 2010). We used a
pharmacogenetic GFAP-TK rat model to block adult neurogenesis
(Snyder et al., 2016) and verified the reduction in neurogenesis in
each animal via DCX immunostaining. In recent work we have
quantified the efficacy of neurogenesis reduction. Here, visual
inspection revealed that VGCV-treated TK rats have a near-
complete reduction of DCX� neurons compared with VGCV-
treated WT rats and vehicle-treated WT and TK rats, qualitatively
resembling the neurogenesis reduction observed in our recent work
that employed the same VGCV dosing protocol (Seib, Chahley,
Princz-Lebel, & Snyder, 2018; Yu, Cooke, Seib, Zhao, & Snyder,
2019).

Task Acquisition

We first measured the number of reversals completed per ses-
sion to broadly assess learning and behavioral flexibility, functions
that have been attributed to adult-born neurons (Anacker & Hen,
2017). Over the 12 days of testing performance improved from �2
reversals per session to �5–6 reversals per session. There was no
difference between VGCV-treated WT and TK rats, though by the
end of testing TK rats tended to complete �1 less reversal per
session (Figure 2A; statistical results provided in figure legend).
Similarly, the number of errors (i.e., incorrect lever choices) de-
creased from �90 to �70 per session over days of testing, with no
difference between WT and TK rats (Figure 2B). We also exam-
ined whether neurogenesis modulates sensitivity to rewards and
negative feedback. Win-stay behavior at the correct lever increased
similarly over days of testing in WT and TK rats; a reward at the
correct lever was equally likely to promote subsequent choice of
the correct lever in both genotypes (Figure 2C). In contrast, lose-
shift behavior at the correct lever was relatively constant over
days, and was significantly greater in TK rats than in WT rats: after
failing to receive reward after a correct lever choice TK rats were
more likely to switch and choose the incorrect lever (Figure 2D).
Win-stay and lose-shift behavior at the incorrect lever was similar
in WT and TK rats (Figure 2E–F).

Steady State Performance

To assess how disruption of neurogenesis altered behavior once
rats were fully familiar with the task demands, we focused subse-

quent analyses on the last 3 days of testing. By this point, rats had
reached asymptotic performance (Day 10–12 reversals: effect of
day F(2, 30) � 0.9, p � .4; Day 10–12 errors: effect of day: F(2,
30) � 0.4, p � .6). WT and TK rats committed a similar number
of errors, and chose the incorrect lever on approximately 30% of
trials (Figure 3A). There was also no effect of neurogenesis re-
duction on the number of reversals (Figure 3B). These results
indicate that neurogenesis-deficient rats are generally capable of
tracking rewards over time and adjusting their behavior in re-
sponse to changes in reward contingencies.

To determine whether neurogenesis modulates responding to
rewarded or negative feedback we quantified win-stay and lose-
shift behavior after both correct and incorrect choices. Following
correct choices, WT and TK rats showed a high degree of win-stay
behavior (�75% of trials; Figure 3C), that did not differ across
groups, indicating that they were equally sensitive to the reinforc-
ing effects of reward. Consistent with the acquisition data, on the
20% of trials where the correct lever choice was not rewarded, TK
rats were more likely to shift to the incorrect lever on the subse-
quent trial (Figure 3D), indicating that disruption of neurogenesis
increased sensitivity to misleading negative feedback. We next
examined reward and feedback sensitivity on trials where rats
chose the incorrect lever. Here, TK rats displayed lower levels of
win-stay behavior after rewarded “incorrect” choices (Figure 3E).
In contrast, there was no difference in lose-shift behavior after
nonrewarded incorrect choices (Figure 3F).

Whereas misleading negative feedback should be ignored in
order to maximize rewards, after eight consecutive correct choices
the reward contingencies switch and negative feedback at the
formerly correct lever is no longer misleading, but informative.
Because neurogenesis disruption is often associated with impaired
reversal behavior (Burghardt, Park, Hen, & Fenton, 2012; Epp,
Silva Mera, Köhler, Josselyn, & Frankland, 2016; Garthe, Behr, &
Kempermann, 2009; Swan et al., 2014) this might suggest that TK
rats would be insensitive to this form of negative feedback and
persist at the formerly correct lever. On the other hand, we ob-
served that TK rats were more sensitive to negative feedback when
it was misleading. To determine whether neurogenesis contributes
to learning from informative negative feedback in the PRL task we
therefore quantified perseverative errors, defined as the number of
consecutive incorrect choices after the identity of the correct and
incorrect levers has switched. Rats averaged �2 perseverative
errors before switching to the new correct lever location and we
found no difference between WT and TK rats, indicating that
neurogenesis is not required to redirect behavior when rewards
shift in the PRL task (Figure 4A, B). Perseverative errors were
similar between genotypes during both the first reversal and when
data from the entire session was pooled.

Another process that could contribute to behavioral flexibility is
the ability to anticipate reversals. Given the role of the hippocam-
pus in forming cognitive maps, we reasoned that blocking neuro-
genesis might impair rats’ ability to understand the task structure
and predict contingency switches. We therefore examined bouts of
consecutive correct lever choices. We predicted that, if WT rats
understood the task structure, they would display more bouts of
nine or more consecutive correct choices (i.e., indicating they
made eight consecutive correct choices on one lever and then
switched to the other lever for the ninth choice). However, both
WT and TK rats displayed a similar distribution of correct lever
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choices (Figure 4C) and rarely made nine or more consecutive
correct choices (average number of times rats made �9 consecu-
tive correct choices on Days 10–12: WT: 3.3 � 0.7, TK: 2.4 �
0.6, mean � SEM; T15 � 1.0, p � .31).

Neurogenesis reduction did not alter a host of other performance
measures: WT and TK rats displayed an equally small number of
omissions per session (WT: 1.0 � 0.5, TK: 0.2 � 0.1, mean �
SEM; T15 � 1.5, p � .15). TK rats tended to be more active but
genotype differences were not significantly different (WT: 1,456
� 159 beam breaks/session, TK: 1,964 � 194, mean � SEM;

T15 � 2.0, p � .06). Finally, WT and TK rats did not differ in
choice latencies (WT: 0.65 � 0.15 s, TK: 0.53 � 0.05 s, mean �
SEM; T15 � 0.4, p � .7).

Performance Across Reversal Blocks

In tasks that can be solved with both dorsal striatal and hip-
pocampal memory systems, the hippocampus has sometimes been
reported to play a greater role in initial learning but, with addi-
tional training, behavioral control shifts to the striatum as habits

Figure 2. Task acquisition. (A) The number of reversals completed per day increased over days of testing and
did not differ between genotypes (effect of day, F(11, 165) � 8.3, p � .0001; effect of genotype, F(1, 15) �
0.4, p � .5; interaction, F(11, 165) � 0.6, p � .7). (B) The number of errors decreased over days of testing and
did not differ between genotypes (effect of day, F(11, 165) � 7.4, p � .0001; effect of genotype, F(1, 15) �
0.12, p � .7; interaction, F(11, 165) � 1.4, p � .16). (C) Win-stay behavior at the correct lever increased over
days of testing and did not differ between genotypes (effect of day, F(11, 165) � 13.3, p � .0001; effect of
genotype, F(1, 15) � 0.09, p � .78; interaction, F(11, 165) � 1.0, p � .4). (D) Lose-shift behavior at the correct
lever was greater in TK rats than in WT rats (effect of day, F(11, 165) � 0.4, p � .9; effect of genotype, F(1,
15) � 6.7, � p � .02; interaction, F(11, 165) � 0.4, p � .97). (E) Win-stay behavior at the incorrect lever was
similar in WT and TK rats (effect of day, F(11, 165) � 13.5, p � .0001; effect of genotype, F(1, 15) � 0.09,
p � .3; interaction, F(11, 165) � 1.7, p � .09). (F) Lose-shift behavior at the incorrect lever was similar in WT
and TK rats (effect of day, F(11, 165) � 2.7, p � .004; effect of genotype, F(1, 15) � 0.18, p � .7; interaction,
F(11, 165) � 0.9, p � .6). VGCV � valganciclovir; WT � wild type; TK � thymidine kinase.
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are acquired (Packard & McGaugh, 1996; Poldrack et al., 2001).
Moreover, in contextual fear conditioning, neurogenesis is re-
quired for learning when the training duration is short and only a
single conditioned stimulus-unconditioned stimulus (CS–US) pair-
ing is delivered (Drew, Denny, & Hen, 2010). We therefore
reasoned that neurogenesis may be involved in the early stages of
probabilistic reward learning when there have been few opportu-
nities to learn the correct versus incorrect lever identities. While it
could also be the case that the hippocampus is more involved in the
early days of training, we opted to examine within-session learning
once rats had reached steady state performance in order to avoid
confounds associated with procedural learning of the task de-
mands. To this end we examined the number of trials and errors to
criterion for the initial discrimination and first three reversal
blocks (which were successfully completed by all rats on Days
10–12 of testing). TK rats required more trials to discriminate the
correct and incorrect levers (Figure 5A). While the Block �
Genotype interaction was not significant, this deficit was clearly
limited to the initial discrimination and first reversal, where TK
rats required �60% more trials to criterion. TK rats also commit-
ted more errors prior to reaching criterion, specifically on the first
reversal (Figure 5B).

These analyses raise the question of why TK rats are slower to
discriminate the correct and incorrect levers. Because rats with
ventral hippocampal lesions are more impulsive (Abela, Dough-
erty, Fagen, Hill, & Chudasama, 2013), and mice that lack DG and
CA1 NMDA receptors are more likely to check lures in a spatial
task (Bannerman et al., 2012), we reasoned that TK rats may
display impulsive behaviors that prevent efficient initial sampling
of the correct and incorrect levers. For example, a rat that under-
stands the task demands and persists with a lever for five consec-
utive trials could identify with near certainty whether it is the
correct or incorrect lever. In contrast, a rat that samples a given
lever for only one to two consecutive trials, and frequently shifts
between levers, may fail to effectively integrate knowledge of wins
and losses over time. We therefore examined patterns of lever
sampling during the initial discrimination, but found that WT and
TK rats were generally comparable. They exhibited similar per-

sistence at the first lever chosen in the session (WT 2.7 � 0.4
trials, TK 2.0 � 0.4, p � .25; mean � SEM), similar average
number of consecutive choices at the correct and incorrect levers
prior to the initial discrimination (correct: WT 2.3 � 0.1 trials, TK
2.7 � 0.2, p � .09; incorrect: WT 1.9 � 0.2 trials, TK 1.7 � 0.1,
p � .4) and a similar rate of shifting from one lever to the other
during the initial discrimination (WT 0.38 � 0.03 shifts/trial, TK
0.41 � 0.07, p � .8). Also, there was no obvious difference in
choice preference on the first trial of the session that would suggest
perseveration (initial choice of the lever that was correct at the end
of the previous day’s session, over Days 10–12: WT 9/27 trials,
TK 11/24). These data suggest that WT and TK rats employed
similar sampling strategies at the beginning of a session but that
WT rats required fewer trials to learn which lever was most
profitable.

In previous work we have found that our GFAP-TK rats are
healthy and display indistinguishable patterns of behavior in open
field-based tests of anxiety and memory (Seib, Chahley, et al.,
2018; Snyder et al., 2016). Nonetheless, to rule out potential
nonspecific effects of the transgenic manipulation, we additionally
tested a cohort of WT and TK rats that did not receive valganci-
clovir and were only treated with vehicle. Consistent with a spe-
cific role for neurogenesis, there were no behavioral differences
between vehicle-treated WT and TK rats (see Figure 6).

Discussion

In the real world, actions do not always lead to the desired
outcome. However, when actions are repeated, one can integrate
outcomes across experiences to determine which cues are predic-
tive and which actions are most profitable. To determine the role
of newborn neurons in probabilistic learning, we tested transgenic
neurogenesis-deficient rats in a task that is modeled after tests used
to probe probabilistic learning and reward and feedback sensitivity
in humans. Neurogenesis-deficient TK rats were initially slower to
identify which lever was more likely to produce a reward, but were
able to successfully track the correct lever across reversals later in
the session. Furthermore, the distinct patterns of win-stay and

Figure 3. Overall performance. Within each daily session of 200 trials, WT and TK rats: (A) committed a
similar number of errors (T15 � 0.8, p � .43); (B) completed a similar number of reversals (T15 � 1.7, p � .11);
and (C) displayed similar rates of correct lever win-stay behavior (T15 � 0.7, p � .52). (D) TK rats displayed
greater correct lever lose-shift behavior than WT rats (T15 � 2.2, � p � .04). (E) WT rats displayed greater
win-stay behavior at the incorrect lever (T15 � 2.2, � p � .04). (F) WT and TK rats displayed similar rates of
lose-shift behavior at the incorrect lever (T15 � 0.01, p � .9). VGCV � valganciclovir; WT � wild type; TK �
thymidine kinase.
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lose-shift behavior observed here indicate that disruption of neuro-
genesis leads to alterations in reward and feedback sensitivity. Be-
cause SVZ-olfactory neurogenesis is also disrupted in GFAP-TK
rats (Snyder et al., 2016), and olfactory bulbectomy produces
depressive-like behavior (Morales-Medina, Iannitti, Freeman, &
Caldwell, 2017), it is conceivable that suppression of olfactory
neurogenesis could explain our results. However, this explanation
seems unlikely because: (a) our VGCV dosing scheme suppresses
hippocampal neurogenesis more than SVZ neurogenesis (Seib,
Espinueva, et al., 2018); (b) blocking olfactory neurogenesis in
mice leads to minor deficits compared with bulbectomy, leaving

Figure 5. Learning across reversal blocks. (A) Trials to criterion: TK rats
required more trials to discriminate the correct and incorrect levers (effect
of block, F(3, 45) � 4.1, p � .01; effect of genotype, F(1, 15) � 13, �� p �
.002; interaction F(3, 45) � 1.6, p � .2). (B) Errors to criterion: TK rats
committed more errors during the first reversal (effect of block, F(3, 45) �
1.8, p � .15; effect of genotype, F(1, 15) � 2.0, p � .17; interaction F(3,
45) � 3.4, p � .02; post hoc � p � .04). VGCV � valganciclovir; WT �
wild type; TK � thymidine kinase.

Figure 4. Perseverative errors. WT and TK rats commit a similar number
of perseverative errors when the correct lever switches locations after the
initial discrimination (A) T15 � 0.2, p � .8 and when averaged across all
contingency switches in a session (B) T15 � 1.3, p � .2. (C) Bouts of
consecutive correct lever choices. WT and TK rats displayed similar
patterns of consecutive correct choices, and did not effectively anticipate
reversals (i.e., executed few bouts of �9 consecutive correct choices;
Kolmogorov–Smirnov test, p � .4). VGCV � valganciclovir; WT � wild
type; TK � thymidine kinase.
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many other forms of olfactory learning and perception relatively
intact (Sakamoto, Kageyama, & Imayoshi, 2014); and (c)
depression-relevant phenotypes are apparent in rodents that have
hippocampal-specific reductions in neurogenesis (Santarelli et al.,
2003; Snyder et al., 2011). Finally, vehicle-treated WT and TK rats
were behaviorally indistinguishable indicating that differences are
not a side effect of the transgenic manipulation.

Numerous studies point to a role for hippocampal neurogenesis
in learning in conditions of uncertainty. These studies have typi-
cally tested animals’ ability to discriminate related patterns of
stimuli, using tests of contextual fear learning (Danielson et al.,
2016; Kheirbek, Tannenholz, & Hen, 2012; Nakashiba et al., 2012;
Niibori et al., 2012; Sahay et al., 2011; Tronel et al., 2012) or
spatial navigation (Arruda-Carvalho, Sakaguchi, Akers, Josselyn,
& Frankland, 2011; Clelland et al., 2009; Luu et el., 2012; Wino-
cur, Becker, Luu, Rosenzweig, & Wojtowicz, 2012). While defi-
cits in these tasks could reflect a role for neurogenesis in spatial
processing, these paradigms do have a probabilistic component in
that individual cues are imperfectly associated with a given out-
come, and only in conjunction with other cues do they gain
predictive value. However, given the complexity of the cue envi-
ronment, and the diversity of behavioral responses, these studies
do not directly address whether neurogenesis regulates probabilis-

tic learning about individual stimuli. In contrast, such a role is
suggested by findings that neurogenesis-deficient mice display
reduced freezing to a tone that was imperfectly paired with foot-
shock (Glover et al., 2017).

By using a more formalized test of probabilistic reinforcement
learning, we have demonstrated that blocking neurogenesis im-
pairs the use of probabilistic reward feedback to guide choice
toward more profitable options. This role in integrating action-
outcome reward history over multiple trials could appear to con-
flict with the traditional view of the hippocampus as a structure
involved in memory for individual experiences. However, hip-
pocampal functions that support episodic memory may also facil-
itate performance in probabilistic learning tasks. For example, a
hippocampal role in forming relational or configural representa-
tions (Olsen, Moses, Riggs, & Ryan, 2012; Rudy & O’Reilly,
2001) may support gradual probabilistic learning about configu-
rations of cues in in the weather prediction task (Ballard, Wagner,
& McClure, 2019; Duncan et al., 2018; Hopkins et al., 2004).
While such a function is also consistent with dentate gyrus and
neurogenesis functions in pattern separation and/or discrimination
behavior (Aimone, Deng, & Gage, 2011; Becker, 2017; Kent,
Hvoslef-Eide, Saksida, & Bussey, 2016; Knierim & Neunuebel,
2016) it is less clear how discriminating relatively simple visual

Figure 6. Similar behavior in vehicle-treated WT and TK rats. Vehicle-treated WT and TK rats committed a
similar number of errors (A) T18 � 1.9, p � .06 and reversals per session (B) T18 � 0.9, p � .4. Vehicle-treated
WT and TK rats displayed similar patterns of correct lever win-stay behavior (C) T18 � 1.5, p � .15, correct
lever lose-shift behavior (D) T18 � 0.9, p � .4, incorrect lever win-stay behavior (E) T18 � 0.6, p � .5, and
incorrect lever lose-shift behavior (F) T18 � 0.2, p � .9. Vehicle-treated WT and TK rats required a similar
number of trials to criterion across reversal blocks (G) effect of genotype, F(1, 18) � 0.5, p � .5; effect of block,
F(3, 54) � 4.0, p � .01; Genotype � Block interaction, F(3, 54) � 0.3, p � .8, and committed a similar number
of errors to criterion across bocks (H) effect of genotype, F(1, 18) � 1.9, p � 1.8; effect of block, F(3, 54) �
6.2, p � .001; Genotype � Block interaction, F(3, 54) � 0.8, p � .5. Vehicle-treated WT and TK rats committed
similar numbers of perseverative errors during the first reversal (I) T18 � 0.3, p � .8 and across the entire session
(J) T18 � 0.2, p � .8. VGCV � valganciclovir; WT � wild type; TK � thymidine kinase.
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stimuli (right vs. left levers) in the PRL task would depend on
these processes. One clue may come from studies that have re-
vealed a critical role for the hippocampus in probabilistic learning
when there is a short delay (seconds) between choice and feedback
(Foerde et al., 2013; Foerde & Shohamy, 2011). Indeed, neuro-
genesis is critical for associative learning over temporal gaps in
trace eyeblink and trace fear conditioning paradigms (Shors et al.,
2001; Shors, Townsend, Zhao, Kozorovitskiy, & Gould, 2002;
Seo, Carillo, Chih-Hsiung Lim, Tanaka, & Drew, 2015) and there
is broad support for a hippocampal role in learning temporal and
sequence information (Eichenbaum, 2014). By contributing to
temporal processing, neurogenesis may have enabled knowledge
of reward histories to persist or accumulate over trials, which could
have facilitated the discrimination of levers that are associated
with ambiguous outcomes.

An additional possibility is that the hippocampus specifically
supports reward processes. In a working memory radial maze task,
a large proportion of dentate gyrus neurons respond selectively to
rewards, and promote prospective firing in downstream CA3 neu-
rons, which then guides subsequent choice behavior (Sasaki et al.,
2018). Involvement of adult neurogenesis in such a process would
suggest a broad role in integrating reward signals into circuits that
promote memory-guided choice behavior. Indeed, neurogenesis
promotes efficient sequential choice strategies in a water maze task
where the goal alternates between two locations (Yu et al., 2019)
and it also promotes choice of delayed but advantageous rewards
in an operant paradigm (Seib, Espinueva, et al., 2018). A more
fundamental role in reward behaviors is suggested by evidence that
blocking neurogenesis reduces sucrose preference (Seib et al.,
2013; Snyder et al., 2011, 2016), reduces the amount of effort mice
and rats are willing to expend to obtain rewards (Karlsson et al.,
2018), increases susceptibility to cocaine self-administration
(Noonan, Bulin, Fuller, & Eisch, 2010; Deroche-Gamonet et al.,
2018), and reduces methamphetamine seeking (Galinato et al.,
2018). That neurogenesis may be involved in more fundamental
aspects of reward learning fits with recent evidence that hippocam-
pal patients are impaired at learning the values of simple (noncon-
figural) cues in a probabilistic task (Palombo et al., 2019).

Reinforcement learning theory distinguishes between model-
free learning, where actions are reinforced to the extent that they
directly lead to reward, and model-based learning, where an inter-
nal model is generated to flexibly choose actions independently of
whether they have been directly linked to reward (Gershman &
Daw, 2017). Consistent with cognitive map-related functions in
flexible navigation and planning (Schiller et al., 2015), studies
using multistep probabilistic operant tasks have implicated the
hippocampus in model-based decision-making (Miller, Botvinick,
& Brody, 2017; Vikbladh et al., 2019). While the PRL task is not
explicitly designed to test model-based learning, there was no
obvious sign that WT rats had a better internal model of the task
that could have enhanced performance. For example, whereas
hippocampal-dependent knowledge of PRL task structure supports
anticipatory reversals in humans (Vilà-Balló et al., 2017), we did
not observe such differences between WT and TK rats. WT rats
also did not employ more efficient strategies to identify the correct
lever, suggesting that after many days of training both genotypes
had a similar understanding of the task demands. Instead, the faster
discrimination in WT rats may simply be because they can learn
with less information, just as neurogenesis-intact mice undergo

context fear conditioning with fewer CS–US pairings (Drew et al.,
2010). Our findings therefore align with computational predictions
that an episodic memory system may be particularly advantageous
when there is insufficient data to develop an internal model that
can be used to drive decision making (Gershman & Daw, 2017).
The early, within-session deficit in TK rats also mirrors previous
findings that the hippocampus tends to be recruited earlier (than
the striatum) in tasks that can be solved with both systems (Chang
& Gold, 2003; Packard & McGaugh, 1996; Poldrack et al., 2001).

Successful performance in the PRL task requires rats to reverse
their responses after a contingency switch, enabling comparison
with other paradigms where neurogenesis has been found to pro-
mote behavioral flexibility. Disrupting neurogenesis induced per-
severative impairments in spatial reversal behavior in the water
maze (Epp et al., 2016; Garthe et al., 2009), in an active place
avoidance task (Burghardt et al., 2012), and in a homecage sucrose
preference test (Seib et al., 2013; Snyder et al., 2011; but
see Groves et al., 2013). Here we observed that TK rats made more
errors during the first reversal of a session, but this was not
accompanied by an increase in perseverative choices at the previ-
ously correct lever. The most likely explanation for this apparent
discrepancy is that, in other studies, goals and rewards were
deterministic and were reinforced on each trial leading up to the
reversal. Instead, in the PRL task, rewards were delivered on a
probabilistic basis, which may have encouraged a greater degree of
flexibility in choice behavior at the time of the reversal which in
turn would reduce the tendency to perseverate after a reversal shift.
Familiarity with repeated reversals may have also improved per-
formance, but this cannot fully explain our data because well-
trained neurogenesis-deficient mice display impaired spatial rever-
sal behavior in a deterministic touchscreen paradigm (Swan et al.,
2014), and neurogenesis-deficient rats briefly persist at the previ-
ous day’s goal location even after many days of daily alternation
in a water maze (Yu et al., 2019).

Neurogenesis is implicated in numerous mental health disorders
but has perhaps been most commonly studied in the context of
depression (Cameron & Schoenfeld, 2018; Eisch & Petrik, 2012).
Indeed, hippocampal dysfunction in depression is well established
(Treadway et al., 2015) and a number of studies have revealed
depression-relevant behavioral functions for neurogenesis: Adult-
born neurons are sensitive to stress and glucocorticoids, they
suppress glucocorticoid release, they promote exploratory behav-
ior in situations of approach-avoidance conflict, they are protective
against the anxiogenic and depressogenic effects of acute and
chronic stress, and they are necessary for behavioral efficacy of
electroconvulsive shock and serotonergic antidepressant drugs
(Anacker et al., 2018; Lehmann, Brachman, Martinowich, Sch-
loesser, & Herkenham, 2013; Revest et al., 2009; Santarelli et al.,
2003; Schloesser et al., 2015; Schoenfeld & Gould, 2012; Snyder
et al., 2011; Surget et al., 2011).

One of the core symptoms of depression is a reduced ability to
seek out and experience pleasurable stimuli (DSM–5). In some
cases, patients may enjoy rewards normally but display deficits in
motivation, anticipation, and planning behaviors that are required
to obtain rewards (Treadway & Zald, 2013). As outlined above,
there is ample evidence that adult hippocampal neurogenesis is
involved cognitive aspects of reward behavior that could contrib-
ute to symptoms of anhedonia. The current data add to this by
revealing that neurogenesis does not modulate sensitivity to ac-
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tions that are highly predictive of rewards—TK rats were equally
likely to choose the correct lever again after receiving a reward
there. Yet, rats with neurogenesis showed a greater sensitivity to
reward at the incorrect lever. On the surface, this behavior appears
disadvantageous since incorrect lever choices only infrequently led
to rewards and therefore detract from the total number of rewards
that can be obtained. However, in dynamic natural environments,
sensitivity to unlikely rewards may enable an individual to flexibly
redirect their choices in new and advantageous directions.

Cognitive theories of depression propose that negative biases
contribute to the depressive phenotype (Clark, Chamberlain, &
Sahakian, 2009). In particular, depression has been associated with
an exaggerated response to negative feedback, where patients tend
to have a distorted view of their performance that overemphasizes
failure and may hamper their ability to pursue rewards and goals.
In laboratory tests, errors in planning and delayed nonmatch to
sample tasks are more likely to precipitate further errors in patients
with depression, relative to healthy subjects (Elliott et al., 1997,
1996; Steffens, Wagner, Levy, Horn, & Krishnan, 2001). Subse-
quent work using probabilistic tasks shows that patients are spe-
cifically more sensitive to misleading negative feedback, shifting
behavior away from a correct choice upon failing to receive
reinforcement (Murphy et al., 2003; Taylor Tavares et al., 2008).
Whether this is due to hippocampal dysfunction is unclear, but
possible given that negative feedback signals are present in the
hippocampus (Dobryakova & Tricomi, 2013; Foerde & Shohamy,
2011) and medial temporal lobe amnesics display greater lose-shift
behavior in the Iowa Gambling Task (Gupta et al., 2009). Notably,
serotonergic transmission regulates negative feedback sensitivity
in the PRL in humans (Chamberlain et al., 2006) and rats (Bari et
al., 2010), and has neurogenesis-dependent effects on anxiety and
depression-related behavior (Santarelli et al., 2003). Given the role
for neurogenesis in regulating negative feedback sensitivity that
we have identified, future studies might investigate whether sero-
tonergic effects on feedback sensitivity are also dependent on
hippocampal neurogenesis.

Here, using a pharmacogenetic model of reduced neurogenesis
and a translationally relevant learning paradigm, we have identi-
fied novel functions for adult-born neurons in probabilistic learn-
ing and sensitivity to rewards and negative feedback. Whether the
behavioral changes were due to the specific loss of newborn
neurons or downstream changes that may have arisen over the 6
weeks of neurogenesis ablation remains to be determined, and
could be tested with optogenetic or chemogenetic methods that
allow for more precise temporal disruption of new neuron func-
tioning. Additionally, given that relatively little is known about the
role of the hippocampus in probabilistic learning, our study raises
the question of how other aspects of hippocampal circuitry might
be involved. Given that adult neurogenesis produces only a portion
of the total number of cells in the hippocampus (Snyder, 2019), it
will be important to determine how more global disruption of
hippocampal function impacts probabilistic learning and reward
processes.
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